Tyrosine-Z in oxygen-evolving photosystem II: a hydrogen-bonded tyrosinate.

نویسندگان

  • M Haumann
  • A Mulkidjanian
  • W Junge
چکیده

In oxygen-evolving photosystem II (PSII), a tyrosine residue, D1Tyr161 (YZ), serves as the intermediate electron carrier between the catalytic Mn cluster and the photochemically active chlorophyll moiety P680. A more direct catalytic role of YZ, as a hydrogen abstractor from bound water, has been postulated. That YZox appears as a neutral (i.e. deprotonated) radical, YZ*, in EPR studies is compatible with this notion. Data based on electrochromic absorption transients, however, are conflicting because they indicate that the phenolic proton remains on or near to YZox. In Mn-depleted PSII the electron transfer between YZ and P680+ can be almost as fast as in oxygen-evolving material, however, only at alkaline pH. With an apparent pK of about 7 the fast reaction is suppressed and converted into an about 100-fold slower one which dominates at acid pH. In the present work we investigated the optical difference spectra attributable to the transition YZ --> YZox as function of the pH. We scanned the UV and VIS range and used Mn-depleted PSII core particles and also oxygen-evolving ones. Comparing these spectra with published in vitro and in vivo spectra of phenolic compounds, we arrived at the following conclusions: In oxygen-evolving PSII YZ resembles a hydrogen-bonded tyrosinate, YZ(-).H(+).B. The phenolic proton is shifted toward a base B already in the reduced state and even more so in the oxidized state. The retention of the phenolic proton in a hydrogen-bonded network gives rise to a positive net charge in the immediate vicinity of the neutral radical YZ*. It may be favorable both for the very rapid reduction by YZ of P680+ and for electron (not hydrogen) abstraction by YZ* from the Mn-water cluster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concerted hydrogen-atom abstraction in photosynthetic water oxidation.

Photosystem II evolves oxygen by using water in the unlikely role of a reductant. The absorption of sunlight by chlorophyll produces highly oxidizing equivalents that are filled with electrons stripped from water. This proton-coupled redox chemistry occurs at the oxygen-evolving complex, which contains a tetramanganese cluster, a redox-active tyrosine amino acid hydrogen-bonded to a histidine a...

متن کامل

Computational Insights on Crystal Structures of the Oxygen - Evolving 2 Complex of Photosystem II with Either Ca 2 + or Ca 2 + Substituted

8 ABSTRACT: The oxygen-evolving complex of photosystem 9 II can function with either Ca or Sr as the heterocation, but 10 the reason for different turnover rates remains unresolved 11 despite reported X-ray crystal structures for both forms. Using 12 quantum mechanics/molecular mechanics (QM/MM) calcu13 lations, we optimize structures with each cation in both the 14 resting state (S1) and in a ...

متن کامل

Photosynthetic water oxidation in Synechocystis sp. PCC6803: mutations D1-E189K, R and Q are without influence on electron transfer at the donor side of photosystem II.

The oxygen-evolving manganese cluster (OEC) of photosynthesis is oxidised by the photochemically generated primary oxidant (P(+*)(680)) of photosystem II via a tyrosine residue (Y(Z), Tyr161 on the D1 subunit of Synechocystis sp. PCC6803). The redox span between these components is rather small and probably tuned by protonic equilibria. The very efficient electron transfer from Y(Z) to P(+*)(68...

متن کامل

Inhibition of oxygen evolution in Photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559.

We have found that elevated copper concentrations, apart from the inhibition of oxygen evolution, changed the initial states distribution of the oxygen-evolving complex. Already at low concentrations, copper ions oxidized the low-potential form of cytochrome b (559) and also its high-potential form at higher concentrations at which fluorescence quenching was observed. We suggest that the primar...

متن کامل

Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor.

Photosynthetic water oxidation by photosystem II is mediated by a Mn4 cluster, a cofactor X still chemically ill-defined, and a tyrosine, YZ (D1-Tyr161). Before the final reaction with water proceeds to yield O2 (transition S4-->S0), two oxidizing equivalents are stored on Mn4 (S0-->S1-->S2), a third on X (S2-->S3), and a forth on YZ(S3-->S4). It has been proposed that YZ functions as a pure el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 38 4  شماره 

صفحات  -

تاریخ انتشار 1999